Discussion Vaccination To Embrace or To Refute Biology

Want create site? With you can do it easy.

Discussion Vaccination To Embrace or To Refute Biology

Identify the strengths and weaknesses of both views.
Choose which view you agree with (only in the conclusion).
Explain why you agree with that view

Don't use plagiarized sources. Get Your Custom Essay on
Discussion Vaccination To Embrace or To Refute Biology
From $8/Page
Order Essay

“The impact of vaccination on the health of the world’s peoples is hard to exaggerate. With the exception of safe water, no other modality has had such a major effect on mortality reduction and population growth” (Plotkin and Mortimer, 1988).

The development of safe and efficacious vaccination against diseases that cause substantial morbidity and mortality has been one of the foremost scientific advances of the 21st century. Vaccination, along with sanitation and clean drinking water, are public health interventions that are undeniably responsible for improved health outcomes globally. It is estimated that vaccines have prevented 6 million deaths from vaccine-preventable diseases annually (Ehreth, 2003). By 2055, the earth’s population is estimated to reach almost 10 billion (United Nations Department of Economic and Social Affairs, 2019), a feat that in part is due to effective vaccines that prevent disease and prolong life expectancy across all continents. That said, there is still much to be done to ensure the financing, provision, distribution, and administration of vaccines to all populations, in particular those which are difficult to reach, including those skeptical about their protective value and those living in civil disruption. Agencies including the World Health Organization (WHO), United Nations Children’s Fund (UNICEF), Gavi, the Vaccine Alliance, The Bill & Melinda Gates Foundation, and the Coalition for Epidemic Preparedness Initiative (CEPI), with their multiple funding streams have been instrumental in expanding vaccine benefits to all. These importance of these organizations in global co-operation and participation was essential in the setting of the 2019 global pandemic of SARS-CoV-2, in light of the health and economic impact of COVID-19 on societies in high-, middle- and low-income countries.

Brief History of Vaccine Development
Human use of preparations to prevent specific infections have been described since 1500 AD, beginning in China (Needham, 2000) where smallpox was prevented by variolation, which is the introduction of material from scabs into the skin. In 1796 in the United Kingdom, Edward Jenner observed the immunity to smallpox of milkmaids having previously had natural infection with cowpox (Jenner, 1798). He determined that inoculating small amounts of pus from the lesions of cowpox, presumably containing a virus related to vaccinia, into susceptible hosts rendered them immune to smallpox. The vaccine against smallpox was developed in 1798. The next phase of scientific developments involving the manipulation of infectious agents to extract suitable vaccine antigens took almost a century of research. Louis Pasteur’s work with attenuation by oxygen or heat led to live-attenuated chicken cholera, inactivated anthrax and live-attenuated rabies vaccines at the turn of the 20th century (Pasteur, 1880, 1881, 1885). Alternative methods of attenuation using serial passage of Mycobacterium bovis led to the live Bacille Calmette-Guerin (BCG) (Calmette, 1927) vaccine, still in use today for the prevention of tuberculosis. Serial passage was also used in the development of yellow fever vaccines (Theiler and Smith, 1937a) which are grown in chicken embryo tissues (Theiler and Smith, 1937b). Whole cell killed bacterial vaccines were developed when methods to treat and kill bacteria through heat or chemicals were established and whole cell typhoid, cholera and pertussis vaccines resulted at the end of the 19th Century. In 1923, Alexander Glenny and Barbara Hopkins developed methods to inactivate bacterial toxins with formaldehyde, leading to the diphtheria and tetanus toxoid vaccines (Glenny and Hopkins, 1923).

Advances in virus culture in vitro allowed viral pathogens to be studied in greater detail and attenuation methods due to cultivation in artificial conditions led to the live oral polio, measles, rubella, mumps and varicella virus vaccines. In the 1960’s at the Walter Reed Army Institute of Research, vaccines were developed using capsular polysaccharides (Gold and Artenstein, 1971; Artenstein, 1975), of encapsulated organisms including meningococci and later pneumococci (Austrian, 1989) and Haemophilus influenzae type b (Hib) (Anderson et al., 1972). To protect against multiple serotype variants of polysaccharide capsules, polyvalent vaccines were developed and later conjugated to carrier proteins to enhance their efficacy in infants in particular by recruiting T-cell mediated help to induce memory B-cells (Schneerson et al., 1980). Vaccines made solely from proteins were rare, with the exception of the toxoid vaccines, but the acellular pertussis vaccine containing five protein antigens, was developed to mitigate the unwanted effects of the whole cell vaccine (Sato and Sato, 1999).

Discussion Vaccination To Embrace or To Refute Biology

Discussion Vaccination To Embrace or To Refute Biology

The end of the 20th century marked a revolution in molecular biology and provided insights into microbiology and immunology allowing a greater understanding of pathogen epitopes and host responses to vaccination. Molecular genetics and genome sequencing has enabled the development of vaccines against RNA viruses possessing multiple variants of epitopes, such as the live and inactivated influenza vaccines (Maassab and DeBorde, 1985) and live rotavirus vaccines (Clark et al., 2006). DNA manipulation and excision allowed the use of surface antigen for hepatitis B viral vectors (Plotkin, 2014). The human papilloma virus (HPV) vaccine benefits from enhanced immunogenicity due to the formation of virus-like particles by the L1 antigen of each virus contained in the vaccine (Kirnbauer et al., 1992). Bacterial genome sequencing has provided in depth analysis of meningococcal antigens, to identify potential proteins for meningococcal B vaccines (Serruto et al., 2012).

Vaccine development was tested in 2020 when a novel coronavirus, SARS-CoV-2, emerged from China causing a severe acute respiratory illness, which subsequently spread globally. Within 5 months of the discovery of this virus (7th January 2020) (Zhu et al., 2020) and person-person transmission (Chan et al., 2020), 5,697,334 cases had been identified, with orders of magnitude likely not measured and almost no country escaped the pandemic. Owing to the previous advances in vaccinology, by 8th April 2020, there were 73 vaccine candidates under pre-clinical investigation (Thanh Le et al., 2020). Of these, six were in Phase 1 or 1/2 trials and one was in Phase 2/3 trials by 28th May 2020. The rapidity of this response demonstrated the ability to harness existing technologies including: RNA vaccine platforms (NCT04283461), DNA vaccine platforms (NCT04336410), recombinant vector vaccines (NCT04313127, NCT04324606) and adjuvants. The regulation, manufacturer and distribution of these vaccines will require expedition given the global public health need, from a period of many years to a matter of months. The efficacy and health impact of these vaccines is yet to be established, but if they are effective, then vaccines need to be made available for all global regions affected by SARS-CoV-2. The funding of this endeavor will prove challenging in a global context of national social and economic lockdown and massive government borrowing, but the justification for this provision will be through the multiple benefits to society that will need healthy citizens to rebuild economies in the decades post-COVID-19.

The history of vaccination is not complete without describing the public health intervention that led to the routine use of these vaccines for children globally. The Expanded Program of Immunization (EPI) was founded by WHO in 1974 with the aim of providing routine vaccines to all children by 1990 (World Health Assembly, 1974). In 1977, global policies for immunization against diphtheria, pertussis, tetanus, measles, polio, and tuberculosis were set out. The EPI includes hepatitis B, Hib, and pneumococcal vaccines in many areas and by 2017, 85% of the world’s children (12–23 months of age) received diphtheria, pertussis, tetanus, and measles vaccines (World Bank, 2019).

Health Benefits of Vaccination
Reduction in Infectious Diseases Morbidity and Mortality
The most significant impact of vaccines has been to prevent morbidity and mortality from serious infections that disproportionately affect children. Vaccines are estimated to prevent almost six million deaths/year and to save 386 million life years and 96 million disability-adjusted life years (DALYs) globally (Ehreth, 2003). The traditional measures of vaccine impact include: vaccine efficacy, the direct protection offered to a vaccinated group under optimal conditions e.g., trial settings; or vaccine effectiveness, the direct and indirect effect of vaccines on the population in a real-life setting (Wilder-Smith et al., 2017). Providing a numerical measure of vaccine impact therefore involves estimating the extent of morbidity and mortality prevented. In the United States in 2009, amongst an annual birth cohort vaccinated against 13 diseases it was estimated that nearly 20 million cases of disease and ∼42,000 deaths were prevented (Zhou et al., 2009). Infectious diseases that accounted for major mortality and morbidity in the early 20th century in the United States all showed over a 90% decline in incidence by 2017 from the pre-vaccine peak incidence (Roush and Murphy, 2007), due to high vaccine uptake of over 90% for the DTaP (diphtheria, tetanus, and acellular pertussis), MMR (measles, mumps, and rubella) and polio vaccines (World Health Organisation, 2019a; Table 1). A similar pattern of infectious diseases reduction was seen across other high-income countries, demonstrating the efficacy of vaccines when available and accessible.

Globally, the provision of vaccines is more challenging in many low- and middle- income countries (LMIC), as evidenced by the failure to make the EPI vaccines available to every child by 1990, irrespective of setting (Keja et al., 1988). Central to this is limited financial resources, but other barriers to vaccine introduction include: underappreciation of the value of vaccines locally/regionally though insufficient relevant data on disease burden, vaccine efficacy, or cost-effectiveness; inadequate healthcare infrastructure for vaccine handling, storage, programmatic management, and disease surveillance; and lack of global, regional or local policy-making and leadership (Munira and Fritzen, 2007; Hajjeh, 2011). In 2018, the global uptake of three doses of DTaP reached 86% which corresponded to 116,300,000 infants (World Health Organisation, 2019a). The vaccine coverage is, however, variable between low-, middle- and high-income countries because of a combination of economic and political circumstances as well as variable access to non-governmental support from Gavi, the Vaccine Alliance (Turner et al., 2018; Figure 2). Nevertheless, there has been a decrease in the global burden of diseases caused by vaccine-preventable pathogens (Figure 3) enabling healthier lives for many millions of children. A further benefit following vaccination, is the evidence that although vaccines may not always prevent an infection, for example VZV or pertussis, a milder disease course may follow (Andre et al., 2008; Bonanni et al., 2015).

Did you find apk for android? You can find new and apps.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
*Price with a welcome 20% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Top Writers 4Me
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
See why 10k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
Appreciate all of your hard work! Thank you so much!!
Customer 452483, September 14th, 2021
Healthcare Writing & Communications
Excellent!! You’re awesome, thank you very much for all of your hard work & help!!
Customer 452483, October 24th, 2021
You're awesome! Thank you so much!
Customer 452483, July 27th, 2021
Thank you for your help
Customer 452555, February 16th, 2022
Thank you so much for all of your hard work & help! It’s perfect! Appreciate it!!
Customer 452483, September 11th, 2021
Thank you so much! I appreciate what you do and all of the great help you've given me!
Customer 452483, September 6th, 2021
Good job! Thank you
Customer 452487, October 17th, 2021
I appreciate the help.
Customer 452567, March 18th, 2022
Classic English Literature
Great paper, thank you!
Customer 452591, May 5th, 2022
English 101
Perfect! Very informative! Appreciate all of your hard work! Thank you very much.
Customer 452483, September 22nd, 2021
Customer 452483, July 5th, 2021
Biology (and other Life Sciences)
Power Point Presentation was great, appreciate all of your hard work. Thank you!
Customer 452483, August 9th, 2021
Customer reviews in total
Current satisfaction rate
2 pages
Average paper length
Customers referred by a friend
20% OFF your first order
Use a coupon TOP20 and enjoy expert help with any task at the most affordable price.
Claim my 20% OFF Order in Chat