AB Biology Macromolecule Discussion

Want create site? With you can do it easy.

AB Biology Macromolecule Discussion

A macromolecule is a very large molecule, such as a protein. They are composed of thousands of covalently bonded atoms. Many macromolecules are polymers of smaller molecules called monomers. The most common macromolecules in biochemistry are biopolymers (nucleic acids, proteins, and carbohydrates) and large non-polymeric molecules such as lipids, nanogels and macrocycles.[1] Synthetic fibers and experimental materials such as carbon nanotubes[2][3] are also examples of macromolecules.

Don't use plagiarized sources. Get Your Custom Essay on
AB Biology Macromolecule Discussion
From $8/Page
Order Essay

Definition
IUPAC definition
Macromolecule
Large molecule

A molecule of high relative molecular mass, the structure of which essentially
comprises the multiple repetition of units derived, actually or conceptually, from
molecules of low relative molecular mass.

Notes
1. In many cases, especially for synthetic polymers, a molecule can be regarded
as having a high relative molecular mass if the addition or removal of one or a
few of the units has a negligible effect on the molecular properties. This statement
fails in the case of certain macromolecules for which the properties may be
critically dependent on fine details of the molecular structure.
2. If a part or the whole of the molecule fits into this definition, it may be described
as either macromolecular or polymeric, or by polymer used adjectivally.[4]

The term macromolecule (macro- + molecule) was coined by Nobel laureate Hermann Staudinger in the 1920s, although his first relevant publication on this field only mentions high molecular compounds (in excess of 1,000 atoms).[5] At that time the term polymer, as introduced by Berzelius in 1832, had a different meaning from that of today: it simply was another form of isomerism for example with benzene and acetylene and had little to do with size.[6]

Usage of the term to describe large molecules varies among the disciplines. For example, while biology refers to macromolecules as the four large molecules comprising living things, in chemistry, the term may refer to aggregates of two or more molecules held together by intermolecular forces rather than covalent bonds but which do not readily dissociate.[7]

According to the standard IUPAC definition, the term macromolecule as used in polymer science refers only to a single molecule. For example, a single polymeric molecule is appropriately described as a “macromolecule” or “polymer molecule” rather than a “polymer,” which suggests a substance composed of macromolecules.[8]

Because of their size, macromolecules are not conveniently described in terms of stoichiometry alone. The structure of simple macromolecules, such as homopolymers, may be described in terms of the individual monomer subunit and total molecular mass. Complicated biomacromolecules, on the other hand, require multi-faceted structural description such as the hierarchy of structures used to describe proteins. In British English, the word “macromolecule” tends to be called “high polymer”.

Properties

Macromolecules often have unusual physical properties that do not occur for smaller molecules.

Another common macromolecular property that does not characterize smaller molecules is their relative insolubility in water and similar solvents, instead forming colloids. Many require salts or particular ions to dissolve in water. Similarly, many proteins will denature if the solute concentration of their solution is too high or too low.

AB Biology Macromolecule Discussion

AB Biology Macromolecule Discussion

High concentrations of macromolecules in a solution can alter the rates and equilibrium constants of the reactions of other macromolecules, through an effect known as macromolecular crowding.[9] This comes from macromolecules excluding other molecules from a large part of the volume of the solution, thereby increasing the effective concentrations of these molecules.

Linear biopolymers
All living organisms are dependent on three essential biopolymers for their biological functions: DNA, RNA and proteins.[10] Each of these molecules is required for life since each plays a distinct, indispensable role in the cell.[11] The simple summary is that DNA makes RNA, and then RNA makes proteins.

DNA, RNA, and proteins all consist of a repeating structure of related building blocks (nucleotides in the case of DNA and RNA, amino acids in the case of proteins). In general, they are all unbranched polymers, and so can be represented in the form of a string. Indeed, they can be viewed as a string of beads, with each bead representing a single nucleotide or amino acid monomer linked together through covalent chemical bonds into a very long chain.

In most cases, the monomers within the chain have a strong propensity to interact with other amino acids or nucleotides. In DNA and RNA, this can take the form of Watson-Crick base pairs (G-C and A-T or A-U), although many more complicated interactions can and do occur.

Because of the double-stranded nature of DNA, essentially all of the nucleotides take the form of Watson-Crick base pairs between nucleotides on the two complementary strands of the double-helix.

In contrast, both RNA and proteins are normally single-stranded. Therefore, they are not constrained by the regular geometry of the DNA double helix, and so fold into complex three-dimensional shapes dependent on their sequence. These different shapes are responsible for many of the common properties of RNA and proteins, including the formation of specific binding pockets, and the ability to catalyse biochemical reactions.

DNA is optimised for encoding information
DNA is an information storage macromolecule that encodes the complete set of instructions (the genome) that are required to assemble, maintain, and reproduce every living organism.[12]

DNA and RNA are both capable of encoding genetic information, because there are biochemical mechanisms which read the information coded within a DNA or RNA sequence and use it to generate a specified protein. On the other hand, the sequence information of a protein molecule is not used by cells to functionally encode genetic information.[1]: 5

DNA has three primary attributes that allow it to be far better than RNA at encoding genetic information. First, it is normally double-stranded, so that there are a minimum of two copies of the information encoding each gene in every cell. Second, DNA has a much greater stability against breakdown than does RNA, an attribute primarily associated with the absence of the 2′-hydroxyl group within every nucleotide of DNA. Third, highly sophisticated DNA surveillance and repair systems are present which monitor damage to the DNA and repair the sequence when necessary. Analogous systems have not evolved for repairing damaged RNA molecules. Consequently, chromosomes can contain many billions of atoms, arranged in a specific chemical structure.

Did you find apk for android? You can find new and apps.

Calculate the price
Make an order in advance and get the best price
Pages (550 words)
$0.00
*Price with a welcome 20% discount applied.
Pro tip: If you want to save more money and pay the lowest price, you need to set a more extended deadline.
We know how difficult it is to be a student these days. That's why our prices are one of the most affordable on the market, and there are no hidden fees.

Instead, we offer bonuses, discounts, and free services to make your experience outstanding.
How it works
Receive a 100% original paper that will pass Turnitin from a top essay writing service
step 1
Upload your instructions
Fill out the order form and provide paper details. You can even attach screenshots or add additional instructions later. If something is not clear or missing, the writer will contact you for clarification.
Pro service tips
How to get the most out of your experience with Top Writers 4Me
One writer throughout the entire course
If you like the writer, you can hire them again. Just copy & paste their ID on the order form ("Preferred Writer's ID" field). This way, your vocabulary will be uniform, and the writer will be aware of your needs.
The same paper from different writers
You can order essay or any other work from two different writers to choose the best one or give another version to a friend. This can be done through the add-on "Same paper from another writer."
Copy of sources used by the writer
Our college essay writers work with ScienceDirect and other databases. They can send you articles or materials used in PDF or through screenshots. Just tick the "Copy of sources" field on the order form.
Testimonials
See why 10k+ students have chosen us as their sole writing assistance provider
Check out the latest reviews and opinions submitted by real customers worldwide and make an informed decision.
English 101
na
Customer 452547, March 22nd, 2022
Other
I appreciate the help.
Customer 452567, March 18th, 2022
Classic English Literature
Great paper, thank you!
Customer 452591, May 5th, 2022
Nursing
Good job! Thank you
Customer 452487, October 17th, 2021
History
thank you
Customer 452639, January 24th, 2023
Mathematics
Thank you so much!
Customer 452483, July 26th, 2021
English 101
Amazing thank you!
Customer 452615, August 1st, 2022
Business and administrative studies
Great produce and on time!
Customer 452561, November 8th, 2022
Communications
You're awesome! Thank you so much!
Customer 452483, July 27th, 2021
Nursing
Excellent! Thank you.
Customer 452487, October 16th, 2021
Healthcare Writing & Communications
Thank you so much for all of your hard work! Appreciate it all!
Customer 452483, November 14th, 2021
English 101
This writer was very quick with the draft and even faster with the revision! Thank you!
Customer 452603, May 30th, 2022
1159
Customer reviews in total
96%
Current satisfaction rate
2 pages
Average paper length
47%
Customers referred by a friend
OUR GIFT TO YOU
20% OFF your first order
Use a coupon TOP20 and enjoy expert help with any task at the most affordable price.
Claim my 20% OFF Order in Chat